While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style Copy Citation Share to social media Give Feedback External Websites Thank you for your feedbackOur editors will review what you’ve submitted and determine whether to revise the article.
External WebsitesWhile every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style Copy Citation Share to social media External Websites Thank you for your feedbackOur editors will review what you’ve submitted and determine whether to revise the article.
External WebsitesAssociate Professor of Engineering Systems and Atmospheric Chemistry, Engineering Systems Division and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology.
Noelle Eckley Selin Fact-checked by The Editors of Encyclopaedia BritannicaEncyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.
The Editors of Encyclopaedia Britannica Last Updated: Sep 3, 2024 • Article History Table of Contents geothermal power station Also called: alternative energy (Show more) Key People: Daniel G. Nocera T. Boone Pickens (Show more) Related Topics: geothermal energy wind power solar energy biofuel biogas (Show more)Ask the Chatbot a Question
Ask the Chatbot a Question
renewable energy, usable energy derived from replenishable sources such as the Sun ( solar energy), wind ( wind power), rivers ( hydroelectric power), hot springs ( geothermal energy), tides (tidal power), and biomass ( biofuels).
At the beginning of the 21st century, about 80 percent of the world’s energy supply was derived from fossil fuels such as coal, petroleum, and natural gas. Fossil fuels are finite resources; most estimates suggest that the proven reserves of oil are large enough to meet global demand at least until the middle of the 21st century. Fossil fuel combustion has a number of negative environmental consequences. Fossil-fueled power plants emit air pollutants such as sulfur dioxide, particulate matter, nitrogen oxides, and toxic chemicals (heavy metals: mercury, chromium, and arsenic), and mobile sources, such as fossil-fueled vehicles, emit nitrogen oxides, carbon monoxide, and particulate matter. Exposure to these pollutants can cause heart disease, asthma, and other human health problems. In addition, emissions from fossil fuel combustion are responsible for acid rain, which has led to the acidification of many lakes and consequent damage to aquatic life, leaf damage in many forests, and the production of smog in or near many urban areas. Furthermore, the burning of fossil fuels releases carbon dioxide (CO2), one of the main greenhouse gases that cause global warming.
Britannica Quiz Pop Quiz: 18 Things to Know About Global WarmingIn contrast, renewable energy sources accounted for nearly 20 percent of global energy consumption at the beginning of the 21st century, largely from traditional uses of biomass such as wood for heating and cooking. By 2015 about 16 percent of the world’s total electricity came from large hydroelectric power plants, whereas other types of renewable energy (such as solar, wind, and geothermal) accounted for 6 percent of total electricity generation. Some energy analysts consider nuclear power to be a form of renewable energy because of its low carbon emissions; nuclear power generated 10.6 percent of the world’s electricity in 2015.
Growth in wind power exceeded 20 percent and photovoltaics grew at 30 percent annually in the 1990s, and renewable energy technologies continued to expand throughout the early 21st century. Between 2001 and 2017 world total installed wind power capacity increased by a factor of 22, growing from 23,900 to 539,581 megawatts. Photovoltaic capacity also expanded, increasing by 50 percent in 2016 alone. The European Union (EU), which produced an estimated 6.38 percent of its energy from renewable sources in 2005, adopted a goal in 2007 to raise that figure to 20 percent by 2020. By 2016 some 17 percent of the EU’s energy came from renewable sources. The goal also included plans to cut emissions of carbon dioxide by 20 percent and to ensure that 10 percent of all fuel consumption comes from biofuels. The EU was well on its way to achieving those targets by 2017. Between 1990 and 2016 the countries of the EU reduced carbon emissions by 23 percent and increased biofuel production to 5.5 percent of all fuels consumed in the region. In the United States numerous states have responded to concerns over climate change and reliance on imported fossil fuels by setting goals to increase renewable energy over time. For example, California required its major utility companies to produce 20 percent of their electricity from renewable sources by 2010, and by the end of that year California utilities were within 1 percent of the goal. In 2008 California increased this requirement to 33 percent by 2020, and in 2017 the state further increased its renewable-use target to 50 percent by 2030.